03:00
Machine learning with tidymodels
Welcome!
You can use the magrittr %>%
or base R |>
pipe
You are familiar with functions from dplyr, tidyr, ggplot2
You have exposure to basic statistical concepts
You do not need intermediate or expert familiarity with modeling or ML
Many thanks to Davis Vaughan, Julia Silge, David Robinson, Julie Jung, Alison Hill, and DesirΓ©e De Leon for their role in creating these materials!
πͺ βIβm stuck and need help!β
π© βI finished the exerciseβ
Today:
Tomorrow:
Check Slack (#ml-ws-2023
) for an RStudio Cloud link.
Illustration credit: https://vas3k.com/blog/machine_learning/
Illustration credit: https://vas3k.com/blog/machine_learning/
How are statistics and machine learning related?
How are they similar? Different?
03:00
library(tidymodels)
#> ββ Attaching packages ββββββββββββββββββββββββββββ tidymodels 1.1.0 ββ
#> β broom 1.0.5 β rsample 1.1.1.9000
#> β dials 1.2.0 β tibble 3.2.1
#> β dplyr 1.1.2 β tidyr 1.3.0
#> β infer 1.0.4 β tune 1.1.1.9001
#> β modeldata 1.1.0 β workflows 1.1.3
#> β parsnip 1.1.0.9003 β workflowsets 1.0.1
#> β purrr 1.0.1 β yardstick 1.2.0.9001
#> β recipes 1.0.6
#> ββ Conflicts βββββββββββββββββββββββββββββββ tidymodels_conflicts() ββ
#> β purrr::discard() masks scales::discard()
#> β dplyr::filter() masks stats::filter()
#> β dplyr::lag() masks stats::lag()
#> β recipes::step() masks stats::step()
#> β’ Use tidymodels_prefer() to resolve common conflicts.
Part of any modelling process is
If you are using your own laptop instead of RStudio Cloud:
Check Slack (#ml-ws-2023
) for an RStudio Cloud link.
bonsai (0.2.1.9000, Github (tidymodels/bonsai@aab79), broom (1.0.5, local), dials (1.2.0, CRAN), doParallel (1.0.17, CRAN), dplyr (1.1.2, CRAN), embed (1.0.0, CRAN), finetune (1.1.0.9000, Github (tidymodels/finetune@52d), ggplot2 (3.4.2, CRAN), lightgbm (3.3.5, CRAN), lme4 (1.1-33, CRAN), modeldata (1.1.0, CRAN), modeldatatoo (0.1.0.9000, Github (tidymodels/modeldatatoo), parallelly (1.36.0, CRAN), parsnip (1.1.0.9003, Github (tidymodels/parsnip@e627), plumber (1.2.1, CRAN), probably (1.0.2, CRAN), purrr (1.0.1, CRAN), ranger (0.15.1, CRAN), recipes (1.0.6, CRAN), rpart (4.1.19, CRAN), rpart.plot (3.1.1, CRAN), rsample (1.1.1.9000, Github (tidymodels/rsample@afc4), scales (1.2.1, CRAN), stacks (1.0.2.9000, local), textrecipes (1.0.2, CRAN), tibble (3.2.1, CRAN), tidymodels (1.1.0, CRAN), tidyr (1.3.0, CRAN), tune (1.1.1.9001, Github (tidymodels/tune@fea8b02), vetiver (0.2.0, CRAN), workflows (1.1.3, CRAN), workflowsets (1.0.1, CRAN), yardstick (1.2.0.9001, Github (tidymodels/yardstick@6c), and Quarto (1.3.433)